Vitamin and Minerals and Neurologic Disease

Steven L. Lewis, MD World Congress of Neurology October 2019 Dubai, UAE stevenlewi@gmail.com

Disclosures

- Dr. Lewis has received personal compensation from the American Academy of Neurology for serving as Editor-in-Chief of *Continuum: Lifelong Learning in Neurology* and for activities related to his role as a director of the American Board of Psychiatry and Neurology, and has received royalty payments from the publishers Wolters Kluwer and Wiley-Blackwell for book authorship.
- He has no disclosures related to the content or topic of this talk.

Objective

 Discuss the association of trace mineral deficiencies and vitamin deficiencies (and excess) with neuropathy and myeloneuropathy and other peripheral neurologic syndromes

Outline of Presentation

- List minerals relevant to neuropathy or myeloneuropathy
- Proceed through each mineral and its associated clinical syndrome
- List vitamins relevant to neuropathy or myeloneuropathy
- Proceed through each vitamin and its associated clinical syndrome

Minerals

- Naturally occurring nonorganic homogeneous substances
- Elements
- Required for optimal metabolic and structural processes
- Both cations and anions
- Essential trace minerals: must be supplied in the diet
- Some have recommended daily allowances (RDA)

Macrominerals

- Sodium
- Potassium
- Calcium
- Magnesium
- Phosphorus
- Sulfur

Macrominerals

- Sodium
- Potassium
- Calcium
- Magnesium
- Phosphorus
- Sulfur

Trace Minerals

- Chromium
- Cobalt
- Copper
- Iodine
- Iron
- Manganese
- Molybdenum
- Selenium
- Zinc

Trace Minerals

- Chromium
- Cobalt
- Copper
- Iodine
- Iron
- Manganese
- Molybdenum
- Selenium
- Zinc

Generalized dose-reponse curve for an essential nutrient

Howd and Fan, 2007

Copper

- Essential trace element
- Human body contains approximately 100 mg Cu
- Cofactor of many redox enzymes
- Ceruloplasmin most abundant of the cuproenzymes
- Involved in antioxidant defense, neuropeptide and blood cell synthesis, and immune function¹

Copper Deficiency

- Causes myelopathy indistinguishable from B12 deficiency
- Posterior column signs, spasticity, myeloneuropathy
- Hematologic: anemia, pancytopenia
- Optic neuropathy
- Malabsorption, malnutrition, parenteral feeds
- Zinc ingestion interferes with copper absorption
- Treatment: copper replacement, removal of zinc

Copper Deficiency—Causes

- Malabsorption, malnutrition, parenteral feeds
- Zinc ingestion interferes with copper absorption
- Treatment: copper replacement, removal of zinc (eg, denture cream, zinc supplements

Case

- 53 y/o woman with 4 months of progressive distal paresthesias
- 3 months prior: normocytic anemia, leukopenia
- Medication: zinc supplements
- Examination:
 - Increased tone in LEs, hyperactive KJs; decreased vibration & proprioception; sensory ataxic gait; MRI cord normal
- EMG
 - Length-dependent primarily axonal motor and sensory PN in Les
- Routine labs: WBC 2.6, MCV 112.5

¹ Rowin, Lewis JNNP 2005

Case

- Cu 7 mg/dl (nl > 70); Zn 2.28 mg/ml (nl < 1.10)</p>
- Tx: Copper replacement, discontinuation of zinc
- Hematologic parameters improved at 3 months
- Gait improved at 6 months
- F/U NCS 6 months later: normalization of sural response

Copper Deficiency Neuropathy

- Mayo study¹: 34/98 patients with copper deficiency had peripheral neuropathy
- Numbress and gait impairment in most; vibratory loss in all
- Decreased ankle reflexes in 41%

Copper Deficiency Neuropathy¹

- EMG: large > small fiber sensory predominant, length dependent axonal neuropathy; evidence for autonomic dysfunction
- Bx: Neurogenic: axonal degeneration, empty nerve strands, decreased density of large and small myelinated and unmyelinated fibers
- 38% of patients had no evidence of myelopathy: neuropathy may be large contributor to sensory ataxia.

¹ Taylor et al, JNNP 2017

Chromium

- Essential trace element
- Required for sugar and fat metabolism

Chromium Deficiency

- Associated with glucose intolerance requiring insulin
- Absorption impaired by zinc
- Case: Neuropathy in 40 y/o woman on TPN with low chromium; neuropathy and glucose intolerance improved with replacement¹
- Case: Neuropathy and glucose intolerance in patient on TPN with low chromium (also on metronidazole); improved only after chromium replacement²
- Chromium deficiency may be a treatable cause of neuropathy

Phosphorus Deficiency

- Associated with acute sensorimotor polyneuropathy
- Seen in IV hyperalimentation without inorganic phosphate
- Distal paresthesias and weakness, areflexia
- Resembles GBS or critical illness neuromyopathy

Phosphorus Deficiency

- Neurophysiology: Absent F-waves¹, or slow NCVs/prolonged distal latencies²
- Clinical/NCS improve with repletion of inorganic phosphate^{1,2}
- Consistent with functional impairment

¹Igochi, JNNP 2006 ²Siddiqui, Muscle Nerve 1998

Selenium

- Essential trace element
- Inorganic form: sodium selenite
- Organified in wheat as an amino acid containing sulfur (Semethylselenocysteine); incorporated in humans as the amino acid L-Selenocysteine
- Component of 25 selenoproteins in humans; antioxidant enzymes, including glutathione peroxidases, scavengers of hydroperoxidases
- Selenocysteine resides in active site of glutathione peroxidase

A Sodium Selenite

B L-Selenocysteine

Loscalzo NEJM 2014

White Muscle Disease

- In animals
- Due to fibrosis and calcium deposition
- In skeletal & cardiac muscle
- Found in 1958 to be prevented by selenium in diet

Keshan Disease

- 1935: Rapidly progressive cardiomyopathy in Keshan, China
- Initially thought to be infectious
- Reappeared in 1960s in Sichuan and Yunnan provinces
- 80% case fatality; most vulnerable: children age 2-7 and women of childbearing age
- Pathology: Myocardial pallor due to fibrosis and necrosis, myocytolysis, similar to white muscle disease

Keshan Disease

- Studies from 1960s-1980s:
- Low selenium levels in soil and blood and local foods found
- Correlated with distribution of Keshan disease cardiomyopathy
- Keshan disease prevented since 1990s by oral selenium supplementation

Sequence of Mechanisms Leading from Selenium Deficiency to Cardiomyopathy

Human White Muscle Disease

- 28 y/o woman with anorexia nervosa, started TPN¹
- One month later: proximal muscle pain and weakness, difficulty walking and standing
- CK 5638 IU/L; selenium 13 mcg/L (nl 107-171); glutathione peroxidase 145 IU/L (nl 280-450)
- Myopathic EMG; normal sensory and motor NCS
- Symptoms improved in 2 months with change to oral diet
- Other reported cases: 18/19 improved, median 4 weeks²

¹ Ishihara, JNNP 1999
 ² Chariot, Muscle & Nerve 2003

A. H&E stain showing atrophic changes and intrafibral vacuoles; B. ATPase stain showing Type II fiber predominance and many vacuoles.

Ishihara JNNP 1999

Molybdenum

- Essential cofactor in xanthine oxidase dehydrogenase and sulfite oxidase
- Enzymes that protect CNS from dietary purine (and sulfite) loading

Molybdenum

- Motor neuron diseases in sheep related to Mo deficiency:
- Xanthosine motor neuron syndrome
 - Progressive and irreversible asymmetric muscle weakness one pelvic limb, and later in the corresponding limb, with atrophy
 - Due to xanthosine (purine) ingestion in setting of Mo deficiency
- Inosine motor neuron syndrome
 - Progressive and irreversible bulbar and respiratory muscle weakness
 - Due to inosine (purine) ingestion during Mo deficiency
- Possible model for human motor neuron disease?

Vitamins and Neuropathy

- Vitamin B12 (cobalamin) deficiency
- Vitamin B1 (thiamine) deficiency
- Vitamin B6 (pyridoxine) deficiency and excess

Vitamin B12 (Cobalamin)

- Cofactor for two important enzymes
 - Methionine synthase
 - L-methyl-malonyl-coenzyme A mutase
- Cellular energy creation
- DNA/RNA synthesis/repair
- Creation of hormones, proteins and lipids

Vitamin B12 (Cobalamin) Deficiency

Vitamin B12 Absorption Pathway

- Cobalamin in stomach \rightarrow bound to haptocorrin
- Travels to duodenum, enzymes degrade haptocorrin
 → free cobalamin then binds to intrinsic factor
- Travels to ileum → Intrinsic factor-B12 complex binds to receptor in ileum → internalized in cells of small bowel
- In circulation, cobalamin heavily protein bound (80% haptocorrin (not usable), 20% transcobalamin II)
- Note B12 levels measure total B12

B12 (Cobalamin) Food Sources

- Found in most animal derived foods, B12fortified foods
- NIH dietary recommendations: 2.4 mcg daily allowance >14 years of age
- 2.6 mcg during pregnancy and 2.8 mcg during lactation

Food	per serving	Percent DV*
Clams, cooked, 3 ounces	84.	1 1,402
Liver, beef, cooked, 3 ounces	70.	7 1,178
Breakfast cereals, fortified with 100% of the DV for vitamin B12, 1 serving	6.	0 100
Trout, rainbow, wild, cooked, 3 ounces	5.	4 90
Salmon, sockeye, cooked, 3 ounces	4.	8 80
Trout, rainbow, farmed, cooked, 3 ounces	3.	5 58
Tuna fish, light, canned in water, 3 ounces	2.	5 42
Cheeseburger, double patty and bun, 1 sandwich	2.	1 35
Haddock, cooked, 3 ounces	1.	8 30
Breakfast cereals, fortified with 25% of the DV for vitamin B12, 1 serving	1.	5 25
Beef, top sirloin, broiled, 3 ounces	1.	4 23
Milk, low-fat, 1 cup	1.	2 18
Yogurt, fruit, low-fat, 8 ounces	1.	1 18
Cheese, Swiss, 1 ounce	0.	9 15
Beef taco, 1 soft taco	0.	9 15
Ham, cured, roasted, 3 ounces	0.	6 10
Egg, whole, hard boiled, 1 large	0.	6 10
Chicken, breast meat, roasted, 3 ounces	0.	3 5

Vitamin B12 Deficiency—Symptoms and Signs

- Peripheral nervous system
 - large fiber sensory/sensorimotor neuropathy, usually length dependent
 - small fiber neuropathy
 - autonomic dysfunction
 - rarely, sensory neuronopathy
- Central nervous system
 - subacute combined degeneration of spinal cord (posterior columns, lateral corticospinal tracts)
 - cognitive and mood changes
 - optic neuropathy: centrocecal scotoma

Vitamin B12 Deficiency—Symptoms and Signs

- Hematologic: megaloblastic anemia
- Glossitis
- Infertility
- Hyperpigmentation

Vitamin B12 (Cobalamin) Deficiency: Neuropathologic Changes

- Peripheral nerves
 - Loss of large myelinated fibers
 - axonal degeneration
 - secondary segmental demyelination
- Spinal cord
 - myelin sheath swelling, lamellae separation
 - intramyelinic vacuoles, similar to HIV vacuolar myelopathy
- Mechanism of pathology unclear
 - ?DNA synthesis impairment
 - decreased methylation of myelin phospholipids
 - aberrant myelination due to impaired fatty acid synthesis

LEHIGH VALLEY HEALTH NETWORK

Vitamin B12 (Cobalamin) Deficiency: Electrophysiologic Changes

- Early: normal
- Later:
 - sensory nerve conduction velocity slowing
 - reduced amplitude sensory nerve action potentials

Vitamin B12 (Cobalamin) Deficiency: Etiology

- Severe or mild malabsorption
 - Pernicious anemia (loss of parietal cells, intrinsic factor)
 - Gastric bypass, bariatric surgery, gastrectomy, inflammatory bowel
 - Mild: atrophic gastritis with achlorhydria, bacterial overgrowth, H. pylorli, Diphyllobothrium latum
 - Drug related: metformin, H2 blockers, PPIs
- Dietary deficiency
 - Vegetarian, vegan
- Genetic mutations
 - Methylmalonic-CoA mutase genetic mutation

Nitrous Oxide and B12 Deficiency

- Nitrous oxide inactivates the cobalt core of B12
- Recreational nitrous oxide use
- Anesthesia-related (nitrous oxide anesthesia with underlying B12 deficiency)

From: Influence of Methylenetetrahydrofolate Reductase Gene Polymorphisms on Homocysteine Concentrations after Nitrous Oxide Anesthesia. Anesthesiology. 2008;109(1):36-43. doi:10.1097/ALN.0b013e318178820b

Vitamin B12 Deficiency: Diagnosis

- Extremely low (<100 pg/mL or <73.8 pmol/L) is usually symptomatic
- False negatives are common (highly protein bound) up to 50% of tests
 - Low normal should not be diagnostic cutoff if suspicion is high
 - Aim for 400-500 pg/mL B12 levels
- Elevated methylmalonic acid and homocysteine levels are supportive of low B12

Vitamin B12 Deficiency: Treatment

- Oral sublingual, parenterally (usually IM), or intranasally
 - Oral: cyanocobalamin, methylcobalamin, hydroxycobalamin
 - Studies show no significant difference in bioavailability or absorption
 - Watch use of cyanocobalamin with renal failure
 - Sublingual
- IM dosing favored for severe, acute treatment
 - 1000 mcg IM q 3-7 days x1 month, then monthly
- High oral dosing may be as effective as IM administration
 - 2000 mcg daily initially, with 1000 mcg daily, then weekly
 - As effective as IM administration in obtaining short term responses
- Folate?

Vitamin B1 (Thiamine)

- Thiamine catalyzes decarboxylation of alpha-ketoacids to coenzyme A moieties in mitochondria
 - Important for ATP synthesis
- Thiamine plays role in formation of myelin
- Thiamine may also affect neuronal conduction by altering membrane sodium channel function

Vitamin B1 (Thiamine)—Food Sources

- Whole grains, meat (pork), fish, fortified grains
 - Thiamine stores are low (half life 10-14 days), need continuous sources
 - NIH recommends 1.2 mg daily for men, 1.1 mg daily for women >19 years
 - 1.4 mg daily allowance with pregnancy and lactation
- Heating food reduces thiamine content
- Thiamine absorbed in the small intestine (active and passive absorption)

Vitamin B1 (Thiamine) Deficiency—Symptoms

- Peripheral neuropathy (dry beriberi)
 - numbness, tingling, burning
 - stocking distribution sensory loss to all modalities, diminished reflexes
 - prominent component of pain
 - mild distal weakness or autonomic dysfunction
- Cardiac (wet beriberi)
 - Congestive heart failure, lower extremity edema, neuropathy
- Central nervous system
 - Wernicke's encephalopathy: ophthalmoparesis, ataxia, confusion
 - Korsakoff's syndrome
 - 80% have signs of peripheral neuropathy

Vitamin B1 (Thiamine) Deficiency: Peripheral Neuropathology

- Sural bx: Loss of primarily large myelinated axons
- Axonal degeneration and secondary demyelination of posterior columns
- Chromatolysis of anterior horn cells and dorsal root ganglia cells

Vitamin B1 Deficiency—Neurophysiology

- Reduced or absent sensory nerve action potentials amplitudes
- Relatively preserved distal sensory latencies and nerve conduction velocities
- Motor nerve action potentials: normal or slightly reduced amplitude

Vitamin B1 Deficiency—Etiology

- ETOH abuse
 - reduced intake/absorption
 - lower thiamine stores in liver
 - ETOH related thiamine phosphorylation
- Age
 - lower intake, low absorption, multiple medications
- Bariatric surgery
- HIV/AIDS
 - malnutrition due to catabolic state
- Hyperemesis
 - Pregnancy, chemotherapy
- Diabetes

Vitamin B1 Deficiency—Diagnosis

- Generally a clinical diagnosis
- Blood and urine tests are slow to result and unreliable
- Erythrocyte transketolase activity may be more accurate

Vitamin B1 Deficiency—Treatment

- No clear treatment guidelines available
- Earlier guidelines recommend 100 mg/day IV or IM with prolonged oral supplementation thereafter
- More recent suggestion of higher doses 250-500 mg
 TID x 3 days, 100 mg po daily thereafter
- Thiamine has few adverse side effects (rare anaphylaxis)
- Benefits >>> risks

Vitamin B6 (Pyridoxine)

- Converted to pyridoxal 5'-phosphate in body (active form)
- B6 absorbed passively in jejunum and ileum
- Numerous important biochemical reactions for metabolism, synthesis of neurotransmitters, histamine, and hemoglobin synthesis and gene expression
- B6 food sources: widely distributed, found in meats, grains, vegetables, legumes, and bananas

Vitamin B6 (Pyridoxine) Deficiency

- Symptoms:
- Sensory > motor polyneuropathy
- Homocystinemia, increasing risk of vascular thrombosis
- Severe deficiency can cause seizures
- Electrophysiology: axonal sensorimotor polyneuropathy

Vitamin B6 Deficiency—Etiology and Tx

- Causes of B6 Deficiency
 - Most associated with treatment with isoniazid (increased excretion) and hydralazine (forms pyridoxal-hydralazine complex)
 - Chronic alcoholism, chronic peritoneal dialysis
 - Decreased levels found in Type 1 Diabetics, HIV, liver disease
- Treatment
 - In cases of malnutrition, 50 mg daily po for several weeks, followed by 2 mg daily
 - Should remain on 50 mg daily of B6 for duration of INH treatment
 - Watch for toxicity

Vitamin B6 (Pyridoxine) Toxicity

- Original description: seven adults with severe ataxia after megadose vitamin B6 use
- 2-6 grams/d
- Most severely disabled
- Sensory ataxia; no weakness
- Areflexia

Signs and Symptoms of Pyridoxine Toxicity

- Unsteady gait, numb feet
- Numbness and clumsiness of hands
- Later: perioral numbress
- Stocking-glove sensory loss to all modalities on exam
- Profound loss of vibration and position sense
- Absent or diminished reflexes
- Absent sensory nerve action potentials on NCSs

CASE NO.	AGE/SEX	Reason for Taking B ₆	MAXIMUM DAILY DOSE	DURATION OF CONSUMPTION
1	36/F	Health magazine advocated it for menstrual edema	2 g	4 mo
2	25/M	Self-imposed dietary supplement	3 g	4 mo
3	35/F	Self-imposed dietary supplement	2 g	40 mo
4	34/F	Gynecologist prescribed it for edema	2 g	34 mo
5	20/M	Orthomolecular psychiatrist prescribed it	6 g	3 mo
6	27/F	Self-imposed treatment for edema	5 g	2 mo
7	43/F	Gynecologist prescribed it	4 g	10 mo

Table 1. Features of Seven Cases of Pyridoxine Abuse.

Pyridoxine toxicity: Pathophysiology

- A sensory neuronopathy
- Possibly related to selected vulnerability of dorsal root ganglia to toxins
- Pue to absence of blood/nerve barrier

Summary

- Neuropathy and myeloneuropathy may occur due to deficiencies of some essential minerals
- Myopathy may occur from selenium deficiency
- Neuropathy and myeloneuropathy may occur due to deficiencies of certain vitamins; dorsal root ganglionopathy from pyridoxine excess
- Deficiencies typically occur in setting of total parenteral nutrition; may occur due to other dietary factors, malabsorption
- Rare, but preventable, and possibly reversible, causes of neuromuscular and myeloneuropathy syndromes